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We perform extensive simulations of a two-dimensional Lennard-Jones glass subjected to quasistatic shear
deformation at T=0. We analyze the distribution of nonaffine displacements in terms of contributions of
plastic, irreversible events, and elastic, reversible motions. From this, we extract information about correlations
between plastic events and about the elastic nonaffine noise. Moreover, we find that nonaffine motion is
essentially diffusive, with a clearly size-dependent diffusion constant. These results, supplemented by close
inspection of the evolving patterns of the nonaffine tangent displacement field, lead us to propose a phenom-
enology of plasticity in such amorphous media. It can be schematized in terms of elastic loading and irrevers-
ible flips of small, randomly located shear transformation zones, elastically coupled via their quadrupolar
fields.
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I. INTRODUCTION

Plastic deformation of amorphous solids and, more gen-
erally, of jammed disordered media �foams, confined granu-
lar media, colloidal glasses,…� has been intensively studied
in the past two decades. General agreement is now gradually
emerging about the nature of the elementary dissipative
events in these highly multistable systems. They consist of
sudden rearrangements of small clusters comprising a few
basic structural units, such as T1 events in dry foams. In the
case of glasses, where they cannot be observed directly,
progress has come, following the pioneer work of Argon and
collaborators, from extensive numerical studies �1–3�. More
recently, simulations performed on model systems—
Lennard-Jones �LJ� glasses—have proved very helpful to im-
prove our understanding of the effect of topological disorder
on the elastic as well as plastic shear response of amorphous
solids.

MD simulations are instrumental in elucidating the ther-
mal dependence of the flow stress ���̇� in the high strain rate
��̇�1� regime. However, such conditions �finite T, high �̇�
“blur” the microscopic motion, making it difficult to charac-
terize precisely the elementary events, which are the building
blocks on which constitutive laws should be based. For this
purpose, a second class of numerical works have focused on
the athermal �T=0�, quasistatic ��̇→0� regime. In this later
regime, hereafter abbreviated as AQS, when a sample is
sheared at constant rate, the stress-strain ���� curve exhibits
�see Fig. 1� elastic branches interrupted by discontinuous
drops ��, which are the signature of the dissipative events.
Beyond an initial transient, ���� fluctuates about an average
value �̄, which is identified with the yield stress �Y
=lim�̇→0 �̄��̇�. The distribution of stress drops is broad and
system-size dependent. In their study on a 2D LJ glass, Ma-
loney and Lemaître �4� were able to analyze them in terms of
cascades of elementary events, which we will term “flips.”
Each such flip involves both the strong rearrangement of a
small cluster ��a few atoms�, and the appearance of an as-
sociated quadrupolar elastic field. This result substantiates

the representation of elementary processes as Eshelby-type
�6� shear transformations �7�.

However, it appears desirable to analyze AQS simulations
in more detail, in order to shed light upon debated questions
concerning phenomenologies based on the notion of shear
transformation zones �STZ� �3,8,9�. Namely,

�1� Can the flipping clusters be associated with regions of
the disordered solid, which retain their identity over a finite
range of elastic loading before they reach their instability
threshold?

�2� If so, do the simulations give information about the
response of a zone to the elastic field generated by the flip of
another zone?

�3� Can one evaluate the relative importance of the dy-
namic noise resulting from this mechanism as compared with
disorder-induced fluctuations of the nonaffine elastic field?

In order to address these issues, we extend in this paper a
recent study on a 2D LJ glass �10�, by Tanguy et al., which
confirms that plastic flow is spatially heterogeneous. They
claim that one should distinguish between two types of plas-
tic events: strongly localized ones occurring during the initial
loading phase ����Y�, and nonlocalized ones, which they
term “nonpermanent shear bands.” They also investigate
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FIG. 1. Stress-strain curve for a 20�20 system.
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atomic motion in the direction transverse to the plastic flow.
While they find it to be diffusive at long times, they conclude
to its hyperdiffusive nature on short time intervals.

Transverse displacements are purely nonaffine and, as in-
dicated by the jagged shape of the ���� curve, consist of a
succession of possibly noisy elastic episodes interspersed
with sudden atomic rearrangements associated with the plas-
tic events, hence the interest of a detailed analysis of their
dynamics. With this remark in mind, we revisit in Sec. II the
analysis of transverse particle motion, now explicitly sepa-
rating elastic and plastic contributions. We thus extract infor-
mation about �i� correlations between plastic events, and �ii�
the elastic contribution to the nonaffine noise invoked in the
phenomenological STZ model of Falk and Langer �9�. More-
over, we find it inappropriate to qualify global transverse
particle motion as hyperdiffusive at short times. Indeed, the
effective diffusion coefficient D����= ��y2� /�� smoothly
increases with �� from a finite short time value D0 to the
asymptotic value D�. Noticeably, the whole D���� curve is
system-size dependent—a result which appears consistent
with the analysis of plastic events in terms of flip cascades.
We also show that the contribution of plastic events to trans-
verse diffusion dominates markedly over the effect of
disorder-induced nonaffine elastic fluctuations.

In Sec. III, on the basis of close inspection of the evolu-
tion of the spatial structure of the infinitesimal nonaffine
field, we show that our results can be interpreted in terms of
the elastic loading of zones driven by shear, which soften
gradually as they approach their spinodal limit. As they ap-
proach this threshold, these zones give rise to quadrupolar
fields of growing amplitude. The zones thus identified can be
traced back over shear intervals substantially larger than the
average interval between plastic events, the effect of which is
thus easily observable.

These observations support a description in terms of elas-
tically loaded zones, and point toward the relevance of the
dynamical noise generated by plastic flips themselves. The
associated interzone elastic couplings should be responsible
for the “autocatalytic avalanches” �5,12� or flip cascades
�4,13� constituting the system-size-dependent plastic events,
which we believe to be precisely the nonpermanent shear
bands invoked in Ref. �10�. We attribute the stronger local-
ization of initial events to the smaller density of nearly un-
stable zones in the as-quenched or weakly stressed samples.

This empirical study thus leads to the emergence of a
phenomenology of the nonaffine shear response summarized
in Sec. IV. While supporting the concept of shear transfor-
mation zones �STZ� or, equivalently, elastically loaded traps
�SGR�, it diverges from these models about two of their ba-
sic assumptions, namely, independence of elementary events
and the nature of noise. We think that it should be of use for
further developments in the modelization of plasticity of
amorphous media.

II. TRANSVERSE PARTICLE MOTION

A. 2D simulations in the AQS regime

We use here the same binary LJ mixture as that of Ref.
�4�, namely, large �L� and small �S� particle radii and num-

bers are rL=0.5, rS=0.3, and NL=NS�1+�5� /4. These values
ensure that no crystallization occurs at low temperature.
Simple shear deformation is imposed using Lees-Edwards
boundary conditions. We study systems of three different
sizes L�L, with L=10,20,40.

The quasistatic regime corresponds to the limit where the
external time scale �̇−1 is much larger than that of internal
relaxation processes. The system, starting from local equilib-
rium, thus follows adiabatically the shear-induced evolution
of the corresponding energy minimum up to the spinodal
limit where this minimum disappears and the system jumps
into another local minimum of lower energy. The simulation
proceeds as follows: a small increment � of homogeneous
shear strain is imposed, then energy is minimized using a
conjugate gradient algorithm with a stringent convergence
criterion �see �4� for details�. We choose �=10−4, small
enough to ensure that, for our system sizes, all elastic
branches are well resolved. A typical ���� curve is displayed
in Fig. 1.

Starting from an initial quench, we explore the shear
range �	2. In order to characterize the stationary state, we
only retain data for �
0.1, which ensures that initial tran-
sients are discarded, thus making details of the quenching
protocol immaterial. We have been able to collect data on
100, 50, and 20 systems of respective sizes L=10,20,40.

Following Ref. �4�, we make extensive use of the so-
called nonaffine tangent field 	ui
, defined as the difference
between the linear response of particle displacements to an
increment of homogeneous strain and the corresponding ho-
mogeneous field. It is well defined, and is computed, every-
where along each elastic branch.

B. Statistics of transverse displacements

In plastically deforming amorphous systems, nonaffine
displacement fields contain information about both, depar-
tures from standard continuum elastic behavior and the na-
ture of plastic events. In our simple shear geometry, trans-
verse particle displacements �yi are purely nonaffine, while
longitudinal ones mix affine and nonaffine contributions. We
thus focus on the normalized distributions P��y ,��� of the
�yi’s for a fixed strain interval ��. The statistical ensemble
is built by sampling, for all initial configurations, all the
�yi=yi��0+���−yi��0� at each step �0 �0.1	�0	2−���.

Our results agree qualitatively with those of Tanguy et al.
�10�. Namely �see Fig. 2�, P��y ,�� has a quasi-Gaussian
center and exhibits, beyond �y�0.2, an exponential tail. Its
fine structure shows more clearly in the log-lin representa-

tion of the distribution P̃��� of the scale variable �
=log10��y�. As displayed in Fig. 3, for small strain intervals
��� /��a few units�, the corresponding curves exhibit a peak
at small �y in the 10−4 range, together with a broad hump for
larger values. As �� increases, the peak shifts to the right
and the hump amplitude grows, though without noticeable
horizontal shift, until both merge, for ���10−2.

Can we interpret this structure and its evolution in light of
the succession of elastic and plastic episodes, which reflect
into the sawtooth shape of the ���� response? Clearly, par-
ticle motion consists of a series of continuous trajectories
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interrupted by sudden jumps associated, respectively, with
elastic episodes and plastic events. Since � is our numerical
strain resolution, each interval of length � is, within our ac-
curacy, defined as either purely elastic or purely plastic. So,

for ��=�, we can decompose P �and likewise P̃� as

P��y,�� = �pl���pl��y,�� + �1 − �pl����el��y,�� , �1�

where �pl��� is the fraction of “plastic intervals” in our en-
semble, and pl �respectively, el� are the normalized distri-
butions associated with the plastic �respectively, elastic� sub-
ensemble. It now clearly appears �see Fig. 4� that the small
�y behavior of P��y ,�� results entirely from elastic motion,
while its hump and large-�y tail are due to plastic events.

On this basis, we are now able to understand the evolution

of P̃ with ��. We extend the above decomposition to ��


�, now defining as “plastic” any interval containing at least
one plastic event. As �� increases while remaining small
with respect to the average length (��pl���−1) of an elastic
branch, most plastic intervals in general still contain only
one plastic event, so that their fraction �pl����
���� /���pl���, while pl remains quasi unchanged, be-
cause the scale of plastic slips is large compared with that of
elastic ones. This explains the evolution �Fig. 4� of the plas-
tic hump which, as �� increases, consists primarily in an
upward shift with little change in shape.

In this regime, which corresponds to �� /���pl���−1

��100 for the 20�20 system�, the fraction �el= �1−�pl� of
purely elastic intervals remains nearly constant �e.g., for L
=20 and ��=10�, ��el /�el�0.1�, so that the variations with

�� of the elastic part of P̃, P̃el=�el����̃el, directly reveal

those of ̃el. Inspection of the numerical data suggests �see

also Fig. 4� that the rightward shifts of P̃el��� are roughly

equal to log10����. The plot �Fig. 5� of P̃el vs log10��y /���
shows that the collapse is indeed excellent in the low and
middle ranges of ��y /��� values, but fails in the large �y
tails.

This collapse means that during the purely elastic epi-
sodes separating plastic events nonaffine displacements are
essentially convective: the � derivative of the yi field is
nearly constant over most of an elastic episode. This amounts
to stating that the tangent nonaffine field 	ui
, although spa-
tially disordered �11�, remains quasiquenched. Now, we
know from Ref. �14� that this cannot be true when the system
comes close below a spinodal threshold �c. Indeed, in these
near-critical regions, a gradually softening elastic mode de-
velops, leading to a ��c−��−1/2 divergence of 	ui
. Clearly, it
is the contribution of these near-critical softened configura-

tions which explains the large-�y tails of ̃el. The tail defla-
tion �Fig. 5� results from the fact that, as the interval ��
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FIG. 2. The distribution P��y ,�� of transverse particle displace-
ments for the elementary strain step � and for system size L=20.
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increases, the weight of these soft configurations is gradually

transferred from ̃el to ̃pl.
This analysis clarifies the physical significance of the

shape of P��y ,��� in the moderate �� range �where its
non-Gaussian parameter remains large �10��: �i� Its quasi-
Gaussian center �11� results from small-scale nonaffine dis-
placements accumulated along purely elastic segments, dur-
ing which particle trajectories are essentially convected. �ii�
Its quasiexponential tail arises from plastic jumps during
plastic events.

For larger �� /���pl���−1, however, the decomposition
of Eq. �1� loses physical content since the statistical weight

of elastic intervals vanishes while ̃pl mixes both elastic and
plastic contributions. In order to circumvent this limitation,
we concentrate in the following on the evolution with �� of
the second moment ��y2�.

C. Transverse particle diffusion

In order to elucidate the nature of the transverse particle
dynamics, we have computed from our data the space and
ensemble average ��y2� for increasing values of ��. In
Fig. 6 we plot the effective diffusion coefficient D����
= ��y2� /��. For our three system sizes, D���� exhibits the
same qualitative features, namely, it increases from a finite
value D0=lim��→0 D, and saturates at a finite value D� for
large �� ��0.5�. However, D is strikingly system-size de-
pendent, D�L����� increasing with L for all ��’s.

Again, in order to shed light on the origin of this behavior,
let us separate explicitly the elastic and plastic contributions
to nonaffine particle motion. Indeed, we can write

dyi

d�
= uiy��� + �

a

Yi
a��� − �a� , �2�

where a labels the strain values where irreversible events
�avalanches� occur, so that

D���� = Dee���� + Dep���� + Dpp���� , �3�

with

Dee���� =
1

����0

�0+��

d��
�0

�0+��

d��uiy���uiy����� ,

�4�

and Dep, Dpp the corresponding cross-correlated and plastic-
plastic contributions. These three functions carry the infor-
mation about self- and cross-correlations of elastic and plas-
tic nonaffine displacements.

Let us first consider the ��→0 limit. A straightforward
asymptotic analysis taking into account the square-root di-
vergence of the tangent field 	ui���
 at spinodal points leads
to �see Fig. 7 for a numerical check�
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Dep���� = O���1/2� , �5�

Dee���� = O„− �� ln����… . �6�

So, their contribution to D���� vanishes, and the finite value
of D0 originates only from avalanches as follows:

D0 = lim
��→0

Dpp = f��Yi
a�2� , �7�

with

f = lim
�→0

��pl���
�

� �8�

the average avalanche frequency, and ��Yi
a�2� the variance of

transverse displacements in a single plastic event.
It was shown in �4,13� that f increases with size roughly

as the lateral system size L. Using the measured frequency,
we find that the variance ��Yi

a�2�=D0f−1 decreases slowly
with size: for L=10,20,40, we get 104��Yi

a�2�=37,26,20.
We will come back to this point later.

Figure 8 shows the decomposition �Eq. �3�� for L=20. It
is seen that, for all, Dpp remains the dominant contribution.
Dpp���� grows, then saturates. Its growth range �pp�0.25
�see Fig. 9, bottom� shows no clear size dependence. This
behavior entails that plastic events are correlated over a finite
�� range, which we understand as measuring a typical shear
range over which the structural features involved in plastic
events retain their identity.

For all sizes, Dep����, though much smaller than Dpp,
exhibits an analogous behavior with a similar correlation
range. This indicates that the above-mentioned persistent
structures dominate the nonaffine elastic response. Moreover,
the near square-root behavior �15� of Dep for small �� sig-
nals that the field 	ui
 in a given near-critical region is
strongly correlated with the displacements associated with
the subsequent avalanche.

Finally, Dee also rises and saturates, but more slowly than
Dep and Dpp. From the data for the three system sizes �Fig. 9,
top�, we evaluate its correlation range to be �ee�1. That is,
a single renewal, after ����pp, of the “active structures” is
not sufficient for the nonaffine field to fully decorrelate. This
we take as a hint of the fact that active structures occupy on
average a fraction only of the total system “volume.” With
this interpretation, we evaluate this fraction as �pp /�ee
�1/4.

III. ZONE EMERGENCE, FLIPS, AND
ELASTIC COUPLINGS

Two phenomenological models of plasticity of jammed
disordered media—namely, the STZ theory of Falk and
Langer �9,16�, and the soft glass rheology �SGR� of Sollich
et al. �17,18�—have been proposed recently. Both describe,
explicitly �STZ� or implicitly �SGR�, plastic events as tran-
sitions concerning small regions, modelized as either
Eshelby-type transformations or jumps out of traps in the
energy landscape. These flips are viewed as independent,
hence individual, and governed by the combined effect of
external drive and of a thermal-like noise.

A question then immediately arises: are our above results
consistent with the basic ingredients of these models? We
now try to answer it by careful inspection of the evolution of
the spatial structure of the nonaffine tangent field 	ui
.

A. Identification of active structures

Let us first recall that 	ui
 can be written as �14�

ui� = Hi�,j�
−1 � j�, �9�

� j� = −
�2U

�� � rj�
, �10�

where �i , j� label particles and �� ,�� label Cartesian compo-

nents. U is the total energy of the LJ system, and H̄
¯

is the
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associated Hessian matrix. ��� is the field of particle force
increments generated by an infinitesimal increment of homo-
geneous shear. 	u=ui
 can be decomposed on the eigen-

modes �n of H̄
¯ �the phonon modes�. Upon approaching a

spinodal point, a single one, �1, softens critically �14,19�.
So, in near-critical regions, u exhibits a square-root diver-
gence and is dominated by its projection u1 on �1. This
property enables us to clearly characterize the active struc-
tures close to the onset of plastic events.

The features we identify as characteristic of the evolution
of u are exemplified in Figs. 8 and 9. In these figures, for
each value of � we decompose the total nonaffine field as

u = u1 + u2 + ũ , �11�

with u1,2 its projections on the two modes �1,2 with lowest
eigenvalues ��1��2�.

We observe that, in all cases, the active structures emerge
out of a quasirandom small background as one or several
localized zones characterized by strong quadrupolar contri-
butions to u. These quadrupoles are approximately aligned
with the principal directions of the homogeneous strain. As
zones approach instability, they soften, and the correspond-
ing growing part of u concentrates into the lowest mode
component u1.

After identifying them in prespinodal regions, we are able
to trace them back over sizeable � ranges before their am-
plitude has decreased enough for them to gradually merge
into the global disordered background structures. In some
cases, this range of visibility extends across one or more
plastic events. A typical sequence illustrating this behavior,
shown on Fig. 10, extends over a range of ���3%, to be
compared with the average length ���1% of elastic epi-
sodes for this system size.

B. Zone flips

Each discontinuous drop on the ���� curve is associated
with the sudden disappearance of one or more of these soft
zones �Figs. 10 and 11�. Noticeably, the resulting changes in
	ui
 remain quite localized, leaving most of the other promi-
nent structures of the nonaffine pattern essentially un-
changed. In particular, zones which were already clearly vis-
ible are commonly seen to survive the plastic event �see Fig.
10�.

We have shown in Sec. II B that particle jumps 	�Ri
a
 in

plastic events are well correlated with the precritical 	ui

structure. This entails that the flip of a zone Z is associated
primarily with a quadrupolar displacement field of finite am-
plitude centered on Z. This supports the representation, pro-
posed by Argon and co-workers �3,8� and explicated by Pi-
card et al. �7�, of the elementary dissipative process as the
Eshelby-type shear transformation of a self-generated inclu-
sion involving a few particles, which is also the basis of the
STZ theory.

This representation is also consistent with the main fea-
tures of the distribution pl��y ,�� of particle displacements
induced by plastic events �see Sec. II B�. Indeed, the plot in
Fig. 12 shows that pl becomes exponential for �y�0.2. In

the Eshelby picture, we expect large �y to correspond to
displacements within the transforming zone�s�, while smaller
�y are associated with particles sitting in the surrounding
elastic medium. In this picture, we interpret the exponential
tail of el, hence of the full distribution P, as reflecting the
diversity of intrazone structures. We thus expect that, upon
varying the system size, the logarithmic slope of the tail
should remain constant. As shown in Fig. 12, this prediction
is very nicely verified for our three L values. Moreover, it
appears that the tail amplitude decreases with increasing L.
In our interpretation, the statistical weight of the exponential
tail is controlled by the volume fraction of zone cores in-
volved in plastic events. Since the average size of the ava-
lanches constituting plastic events scales roughly as L, we
expect the corresponding core volume fraction to decrease
with size, in agreement with the observed behavior.

So, we interpret the existence of an exponential tail in
P��y� as a consequence of structural disorder within trans-
forming zones, and by no means as a signature of avalanche
behavior, which only affects the tail amplitude.

C. Elastic couplings

Consider the sequence shown in Fig. 11. For �=0.1150
�Fig. 11�a�� two zones are clearly discernible in the u pattern.
At �=0.1160 �Fig. 11�b�� their amplitude has grown, and
they appear in the projection u2 of u on the next-to-lowest
mode. At �=0.1161 �Fig. 11�c�� they are slightly softer and
have invaded the projection u1 on the lowest mode. Note
that, in these last two cases, they appear in the nontrivial soft
mode as connected by “flow lines,” which reproduce the
most prominent vortex structures first described by Tanguy et
al. �20�. This is particularly clear when two relatively distant
zones soften simultaneously as shown in Fig. 13.

From these and many similar observations �see Fig. 10�
we deduce that

�1� Soft zones are coupled elastically via their quadrupo-
lar fields.

�2� It is the associated flow lines which form the con-
spicuous vortexlike patterns characteristic of nonaffine fields
in amorphous solids. That such patterns are akin to incom-
pressible flows results from the fact that these systems are
much more compliant in shear than in compression. For our
2D LJ glass �4�: �=39, K=236.

Quadrupolar couplings result, in the homogeneous elastic
continuum approximation for the background medium, from
a stress field �cos�4�� /R2 �with R the length and � the ori-
entation with respect to x̂ of the interzone vector�. Notice
that, in Fig. 11, in u1 the fields of the two zones Z1,Z2, which
are quasivertically aligned, combine positively. We have
checked that, in consistence with the above remark, zone
pairs lying in sectors corresponding to negative couplings
combine negatively in the phonons �1 and �2: in this case,
one of the two zones appears with an opposite sign, i.e., with
reversed flow lines. These observations confirm the rel-
evance of interzone elastic couplings.

It is intuitively clear that configurations with strongly
coupled soft zones are good candidates for simultaneous
flips, as illustrated in Figs. 10 and 11. We observe a number
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of multizone flips, involving the disappearance of at least
one diverging quadrupole, as well as that of some less visible
zones. Moreover, plastic events alter the amplitude of the
near-critical surviving zones in u �see Fig. 10� in a way
which appears roughly consistent with quadrupolar cou-
plings.

IV. PHENOMENOLOGY OF SHEAR ZONES

The various pieces of information, which we have gath-
ered and presented above, can now be organized into a rather
detailed phenomenology of plasticity in our system in the
AQS regime, which can be schematized as follows.

��
��

��
��

��
��

(a)

(b)

(c)

(d)

FIG. 10. System size: L=20. Each line corresponds to a single strain value �. The four frames present, from left to right, the nonaffine
tangent field u and its three components u1, u2, ũ as defined by Eq. �11�. �a� �=0.0556: a quadrupole, clearly visible in the upper right corner
of both u and the soft mode component u1, signals a near-critical zone Z, which flips at �c� �0.0557,0.0558�. �b� �=0.0558: Z has just
flipped and disappeared, pushing another zone Z� �lowest right corners of u and u1� closer to its threshold. Note that Z� was already
discernible �line a� in both u and ũ before the event. ��c� and �d�� Zone Z, now indicated by circles, can be traced back to �=0.0269 �line
c, frame ũ�. It survived the plastic event, which occurred in the interval 0.0269 �line c� and 0.0270 �line d�.

PLASTIC RESPONSE OF A TWO-DIMENSIONAL… PHYSICAL REVIEW E 76, 036104 �2007�

036104-7



�i� Structural disorder gives rise, in such a glassy system,
to the existence of strong inhomogeneities, or zones. These
zones can be viewed as small inclusions à la Eshelby, em-
bedded in a quasihomogeneous elastic background, and plas-
tically transformable under shear. They are advected by ex-
ternal shear toward their instability threshold. Upon
approaching it, a zone softens, then flips at its spinodal and
disappears.

The correlation range �pp between plastic events �see Sec.
II B� provides an evaluation of the amount of strain neces-
sary to fully renew the population of zones. Here �pp
�0.25.

One renewal is not sufficient, however, to decorrelate
fully the nonaffine field. This suggests that zones occupy a
fraction only of the system, of order �pp /�ee, here �1/4.

�ii� Zone elastic softening and plastic flipping are both
associated with quadrupolar components in the nonaffine dis-
placement field, which give rise to interzone elastic cou-
plings. Due to the long range of elastic fields, a zone flip thus
alters the local strain level at any other zone site in the sys-
tem, the resulting � shift depending, in amplitude and sign,
on the relative position of source and target. These signals
have two types of effects.

(a)

(b)

(c)

(d)

FIG. 11. From �a� to �d�: �=0.1150, 0.1160, 0.1161, and 0.1166. Two vertically aligned zones flip together in the interval 0.01165–
0.01166 and disappear. As strain increases from �=0.1150, they soften and sequentially appear in u2, then in u1 after a clear level crossing
in the interval 0.01160–01161. The connecting flow lines are a signature of their elastic coupling.
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�1� A flip signal may shift the strain level of some zones
beyond their threshold �c, thus triggering their flip and initi-
ating a cascade. In the quasi-state regime, where acoustic
delays are neglected, such cascades are instantaneous.

�2� For the nonflipping zones, the elastic signals resulting
from flips constitute a dynamical noise, acting in parallel
with the externally imposed advection, whose frequency
scale is proportional to the strain rate �̇.

So, in agreement with the previous proposition of Bulatov
and Argon �3,8�, also underlying recent models by Picard et
al. �21� and by Baret et al. �22�, we conclude that elastic
couplings between zones play an essential role, by inducing
avalanches and generating the dominant contribution to the
disorder-induced noise. At T=0 and moderate strain rates, it
is this dynamical elastic noise which, in addition to strain
advection, must appear in models of plasticity of jammed
media. In a forthcoming paper, we will propose such a sche-
matic model, and show that it accounts for a system-size
scaling behavior of avalanches.

Within the foregoing picture, we interpret the two kinds of
events invoked by Tanguy et al. �10� as plastic events of
different sizes. Namely, their transient shear bands exhibit

the characteristics expected for large avalanches of the type
described above, their directionality resulting from that of
quadrupolar couplings in their system with two rigid walls.
Their local events correspond to the small stress drops ap-
pearing during initial transients �see Fig. 1�: at low stress
levels, before advection has been able to significantly feed
the near-threshold population, we indeed understand that
avalanche triggering is unlikely, hence that single flip events
are the rule.

Let us finally stress that the above zone phenomenology
remains very schematic. Indeed, exhaustive inspection of the
evolution of u reveals that zone life is somewhat more event-
ful than our simplified description suggests. Rather fre-
quently, we see a given zone undergoing a few flips before it
disappears. Such zones can be termed multistate. In other
instances, a barely visible zone emerges fast enough to
“overtake” previously more visible, softer, ones. That is,
zone moduli and, very likely, thresholds are not unique, but
distributed about an average. These remarks point toward the
interest of pursuing extensive characterization of elastic het-
erogeneity in jammed systems, in particular, via studies of
coarse grained elastic moduli.

On a more speculative level, we would like to raise an
important question: are the irreversible transformations iden-
tified here under shear related to the dynamic heterogeneities
�23–26� characteristic of glassy dynamics near and below
Tg? Indeed, we share the opinion, formulated long ago by
Goldstein �27�, that at finite temperature “rearrangements are
of course occurring all the time in the absence of an external
stress; the external stress, by biasing them, reveals their ex-
istence”.

Our active zones are primarily sensitive to shear. This, we
think, must be put together with recent results by Widmer-
Cooper and Harrowell �28,29�. These authors show that dy-
namic propensity in a 2D LJ glass is uncorrelated with free
volume, which we understand to mean that their local rear-
ranging structures are only weakly coupled to compression.
This leads us to suggest that their observation that zones of
high propensity have large “Debye-Waller factors” amounts
to identifying them as soft zones sensitive to shear—a specu-
lation which will demand extensive future investigation.
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FIG. 12. The distribution pl��y ,�� of particle displacements
induced by plastic events for L=10,20,40.

FIG. 13. Two distant zones soften simultaneously and appear in u1. The characteristic vortexlike structure signals their elastic
coupling.
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